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The early Mesozoic records an important transition in the
history of the Earth’s terrestrial ecosystems. As they recovered
from the largest known mass extinction (the end-Permian
event), organisms in these ecosystems transitioned to new
forms that eventually evolved into the classic Mesozoic biotas,
and laid the foundations for many groups still flourishing
today (Fraser 2006; Irmis & Whiteside 2010; Sues & Fraser
2010). All of this was set against a backdrop of dynamic
climatic and physical events that shaped these biotas. This
early Mesozoic terrestrial transition reached its culmination in
many ways during the Late Triassic, when ecosystems had
largely recovered from the end-Permian extinction, but had
not yet been affected by the end-Triassic mass extinction
(Fraser & Sues this volume). Thus, we see a combination of
taxa, with some groups that would not survive the end of the
Triassic living alongside early representatives of lineages that
flourished later in the Mesozoic (e.g., Fraser 2006; Irmis et al.
2007; Brusatte et al. 2008; Sues & Fraser 2010, this volume)
and in some cases are still diverse today. Just one example of
this transition, recorded during the Late Triassic, is the origin
and diversification of non-avian dinosaurs, the iconic repre-
sentatives of Mesozoic terrestrial ecosystems (Brusatte et al.
2010; Langer et al. 2010). Although small and rare components
of their respective biotas when they first evolved w231 Ma,
dinosaurs were abundant and had a near-worldwide distri-
bution by the beginning of the Jurassic Period (w201·3 Ma).

Given the importance of the Late Triassic terrestrial transi-
tion, it is no surprise that there has been a renaissance in the
study of Late Triassic terrestrial biotas, particularly with
respect to fossil vertebrates (see recent reviews in Brusatte et al.
2010; Sues & Fraser 2010, this volume; Irmis & Whiteside
2010; Langer et al. 2010). New fossil discoveries, re-evaluation
of existing specimens, and new quantitative meta-analyses of
synthetic datasets have significantly changed our view of this
transition in the last 15 years. Nonetheless, the last multi-
authored volumes to review this transition are over 25 and 15
years old (Padian 1986; Fraser & Sues 1994); no new similar
synthetic multi-authored view is available. We hope this vol-
ume goes some way towards redressing this situation.

The renewed interest and breadth of research into Late
Triassic terrestrial vertebrate palaeontology and need for a
new synthesis led the Editors (RJB, RBI and MCL) to convene
a special symposium on ‘Late Triassic Terrestrial Biotas and
the Rise of Dinosaurs’ for the 2009 Society of Vertebrate
Paleontology Annual Meeting in Bristol, United Kingdom.
This symposium brought together over 16 presentations

covering numerous aspects of the Late Triassic transition.
Many of these new research results are presented for the first
time as papers in the present volume. Here, we give a brief
description of the ‘state of the art’ in Late Triassic terrestrial
vertebrate palaeontology, focusing in part, but not exclusively,
on dinosaur origins.

Any evolutionary study in deep time requires a robust
geochronologic framework to calibrate the age of fossil taxa
and their palaeoenvironmental context. These data are critical
for understanding the tempo of change and diversification in
particular clades (e.g., early dinosaurs). They are also neces-
sary for comparisons between different fossil assemblages and
geological units, because accurate data on stratigraphic order-
ing of fossil assemblages is essential to determine whether
potential differences can be ascribed to variation across space
versus time. The study of Late Triassic terrestrial biotas is
certainly no exception. Unfortunately, the Late Triassic is
particularly devoid of published high-resolution radioisotopic
ages (Mundil et al. 2010), and these are particularly few for
non-marine strata, making correlation between assemblages
and to the marine timescale very difficult (Irmis et al. 2010;
Fraser & Sues this volume). Thus, palynofloral and vertebrate
biostratigraphy have been the dominant methods of corre-
lation for non-marine Late Triassic strata (e.g., Litwin et al.
1991; Cornet 1993; Lucas 1998, 2010), but this does not afford
the precision necessary for detailed comparisons, and its
accuracy has certainly been controversial (e.g., Langer 2005;
Rayfield et al. 2005, 2009; Schultz 2005; Irmis et al. 2010).

One bright spot in Late Triassic terrestrial geochronology is
the Newark Supergroup of eastern North America, where a
w35 million year record of lacustrine sedimentation from
multiple rift basins provides a precise and accurate high-
resolution timescale (Kent & Olsen 1999; Muttoni et al.
2004; Olsen et al. this volume). The Newark Supergroup
Astronomically-Calibrated Geomagnetic Polarity Time Scale
(Newark APTS) is derived predominantly from the Newark
Basin, and consists of high-resolution magnetostratigraphy
calibrated by radioisotopic dates and orbitally-paced cyclo-
stratigraphy, allowing for precision of w20 ka or less (Olsen
et al. this volume). The high-resolution magnetostratigraphy
allows correlation to classic Tethyan marine sections (and
thus the marine timescale) (Muttoni et al. 2004), and the
co-occurrence of extensive palynomorph assemblages allows
correlation to existing palynomorph biostratigraphic schemes
(Olsen et al. this volume). In concert with emerging radio-
isotopic data from sections containing terrestrial vertebrates
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(e.g., Irmis & Mundil 2008, 2010; Ramezani et al. 2009), the
Newark APTS allows confident correlations between import-
ant terrestrial fossil assemblages (Olsen et al. this volume).

These absolute age data can also help recast previous
vertebrate biostratigraphic schemes as examinations of faunal
change rather than strictly a correlation tool. However, for
either use, one must have a precise and accurate lithostrati-
graphic framework, with detailed plots of individual fossil
occurrences. Such detailed records have been rare in the past
(cf. Rogers et al. 1993), but researchers are now beginning to
produce such records. For example, a revised lithostratigra-
phy, along with precise stratigraphic placement of fossil dis-
coveries, has revolutionised our understanding of vertebrate
faunal change in the classic Upper Triassic Chinle Formation
sections at Petrified Forest National Park, Arizona, USA
(Parker & Martz this volume). These data demonstrate a
sudden mid-Norian turnover that may correlate with major
palaeoenvironmental perturbations (Parker & Martz this
volume).

The palaeoenvironmental context of the Late Triassic ter-
restrial transition has become increasingly important as
workers address the processes that affected these ecosystems.
Recent studies have identified abrupt palaeoenvironmental
changes reflected in the carbon cycle and depositional environ-
ment that correlate with major vertebrate faunal changes (e.g.,
Whiteside et al. 2010; Olsen et al. this volume; Parker & Martz
this volume). Similarly, major differences in coeval assem-
blages from across the globe may reflect latitudinal or other
climatic differences (Fraser 2006; Irmis et al. 2007; Nesbitt
et al. 2009; Ezcurra 2010a; Ezcurra et al. this volume; Fraser &
Sues this volume; Irmis this volume; Olsen et al. this volume).
These differences could also explain unusual faunal occur-
rences, such as the late-surviving giant dicynodonts in north-
eastern Europe (Dzik et al. 2008; Sulej et al. this volume).
Further investigation of Late Triassic palaeoenvironments
with new analytical methods should prove to be a powerful test
of these climatic-biotic hypotheses (e.g., Dunlavey et al. 2009;
Marynowski & Simoneit 2009).

Among the various tetrapod lineages that originated/
radiated during the Late Triassic (e.g., anurans, turtles, lepi-
dosaurs, mammals), archosaurs deserve particular interest for
their great diversity, morphological disparity and dominance
of terrestrial ecosystems during the remainder of the Mesozoic
Era (in the form of dinosaurs, pterosaurs and crocodyliforms)
and, during the Cenozoic, in the form of crocodylians and
birds (including >10,000 living species). Although the split
between the crocodylian and avian lineages occurred very early
within the Triassic (Nesbitt et al. this volume), a great deal of
the cladogenetic events that set the grounds for the latter
evolution of archosaurs occurred during the Late Triassic
(Brusatte et al. this volume; Irmis this volume) including the
split of Dinosauria into its main clades (Ornithischia, Sauro-
podomorpha and Theropoda) and the origin of Crocodyli-
formes (Pol et al. 2009).

Dinosaurs originated from a grade of small gracile archo-
saurs generally termed ‘basal dinosauromorphs’. Formerly
known only from Middle Triassic deposits of Argentina,
various recent finds and reanalyses (Dzik 2003; Ezcurra 2006;
Ferigolo & Langer 2007; Irmis et al. 2007; Nesbitt et al. 2007,
2010) have increased both their geographical and chronologi-
cal record, further enlarged with the recent inclusion of
Saltopus elginensis in the group (Benton & Walker this vol-
ume). Some of these basal dinosauromorphs may form an
unusual clade of long-armed, beaked forms, the silesaurids
(Langer et al. 2010; Nesbitt et al. 2010), with records occurring
through most of the Mid–Late Triassic, in Africa, Europe and
South and North America.

Following two previous booms of discoveries during the
early (Sereno & Novas 1992; Sereno et al. 1993) and late
(Bonaparte et al. 1999; Langer et al. 1999) 1990s, the last few
years witnessed a burst of exciting discoveries of early dino-
saurs. These have included: an herrerasaurid, Sanjuansaurus
gordilloi (Alcober & Martinez 2010) and two basal sauro-
podomophs, Panphagia protos (Martinez & Alcober 2009) and
Chromogisaurus novasi (Ezcurra 2010b), from the Ischi-
gualasto Formation of Argentina; Tawa hallae, a new basal
theropod, from the Chinle Formation of western USA (Nesbitt
et al. 2009); the only well known Triassic ornithischian,
Eocursor parvus, from the lower Elliot Formation of South
Africa (Butler et al. 2007; Butler 2010); and two new basal
sauropodomophs from the Upper Maleri Formation of India
(Novas et al. this volume). In addition to a better understand-
ing of the phylogenetic positions of these taxa, reinterpreta-
tions of previously known taxa such as Aliwalia rex (Yates
2007), Guaibasaurus candelariensis (Langer et al. this volume),
Heterodontosaurus tucki (Butler et al. 2007, 2008; Porro et al.
this volume), Staurikosaurus pricei (Bittencourt & Kellner
2009) and Zupaysaurus rougieri (Ezcurra & Novas 2007), have
also helped to unravel basal dinosaur evolution.

Despite these contributions, various aspects of early dino-
saur phylogeny remain controversial. Basal ornithischian
phylogeny is particularly problematic, with Eocursor parvus,
Lesothosaurus diagnosticus and heterodontosaurids placed in
very different positions according to the recent published
hypotheses (Sereno 1999; Xu et al. 2006; Butler et al. 2007,
2008, 2010). Among saurischians, Guaibasaurus candelariensis
is placed within either the sauropodomorph (Ezcurra 2010b;
Novas et al. this volume) or theropod (Langer et al. this
volume) lineages, as is also the case for the very fragmentary
Agnosphitys cromhallensis (Yates 2007; Ezcurra 2010b). How-
ever, the most contentious and longest-lasting issue is the
position of herrerasaurids, with recent publications endorsing
(Sereno 2007; Nesbitt et al. 2009, 2010) or rejecting (Langer
& Benton 2006; Irmis et al. 2007; Yates 2007; Alcober &
Martinez 2010; Ezcurra 2010b; Novas et al. this volume) their
theropod affinities. The putative herrerasaurid Chindesaurus
bryansmalli also has an erratic position, and was considered a
basal theropod even in phylogenies that excluded core-
herrerasaurids from the group (Yates 2007; Novas et al. this
volume). Finally, Eoraptor lunensis has also been alternatively
nested within (Sereno 2007; Nesbitt et al. 2009; Ezcurra 2010b)
or outside (Langer & Benton 2006; Yates 2007; Alcober &
Martinez 2010) Theropoda.

Sereno (2007) discussed the possible reasons for this discrep-
ancy of opinions. Although there is certainly space for broader
taxon and character sampling, and for more precise character
state definitions, we believe that this is also a measure of the
dynamic nature of the field of research, with numerous studies
scrutinising a relatively short segment of evolutionary history.
However, among the drawbacks of an ambiguous phylogenetic
framework is its limitation as a foundation for ongoing
meta-analytical approaches to understanding macroevolution
(e.g., Barrett et al. this volume). As so often in palaeontology,
we hope that further finds and more comprehensive phylo-
genetic studies may provide a stronger basis for macro-
evolutionary work.

The palaeobiology and palaeoecology of Late Triassic ter-
restrial tetrapods and their ecosystems remain relatively little
studied, and represent a promising avenue for future research.
For example, there has been considerable interest historically
in dietary preferences among Triassic tetrapods (e.g.,
Crompton & Attridge 1986; Galton 1986; Barrett 2000; Reisz
& Sues 2000; Small 2002; Barrett et al. this volume), particu-
larly focusing on multiple independent origins of herbivory
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and the possibility that tetrapod faunal turnover was driven by
changes in floral palaeocommunities (e.g., Benton 1983). Re-
cent discoveries of apparently omnivorous and/or herbivorous
silesaurids and reevaluations of archosaur phylogeny have led
to reexaminations of dietary evolution amongst early dino-
saurs and closely related taxa, questioning long held assump-
tions (Nesbitt et al. 2010; Barrett et al. this volume). The
continued development of such work, combined with careful
functional work focusing on exemplar taxa (e.g., Desojo &
Vizcaı́no 2009; Porro 2009) and better understanding of en-
vironmental differences between fossil sites, should begin to
yield insights into palaeocommunity structure and evolution.

Historically, work on Triassic biogeography has been quali-
tative in nature, and has focused on the presence or absence of
major barriers to faunal exchange on the Pangaean supercon-
tinent and the potential influence of climate-driven latitudinal
variations in faunas (e.g., Olsen & Galton 1984). Quantitative
analyses were pioneered by Shubin & Sues (1991), but have
remained relatively scarce, despite the toolkit of possible
palaeobiogeographical approaches available. Palaeontologists
are now finally beginning to explore these methods in detail:
for example, Nesbitt et al. (2009) used likelihood-based
methods to assess ancestral areas and dispersal events among
early dinosaurs, whereas Ezcurra (2010a) used tree-
reconciliation analysis and a novel approach in which palaeo-
latitude is mapped onto area cladograms to examine the
biogeography of Triassic tetrapods more broadly. Both studies
found quantitative evidence for an important role of palaeo-
latitude in determining Triassic biogeography. These alterna-
tive methodological approaches address subtly different
questions, and there is as yet no empirical evidence as to which
of the multitude of available biogeographical techniques is
most likely to give reliable results. Moreover, these studies
represent the tip of the iceberg in terms of possible method-
ologies and datasets, and it is likely that ongoing work,
combined with new data and increasingly detailed phylogenies,
will yield further new insights.

Macroevolutionary work on Triassic faunas has generally
focused on taxonomic diversity, beginning with the pioneering,
although often controversial, global studies of Benton (1983,
1994; see also Brusatte et al. this volume), which examined the
evidence for Triassic extinction events and their impact on
Triassic terrestrial tetrapods. Recent work has stressed that
such global analyses should be treated with caution, due to the
the problems of stratigraphic correlation and the possibilities
of differing regional signals (e.g. Irmis this volume). Although
no similar global study of all tetrapods has been carried out
since Benton (1994), work has focused on individual clades
(e.g., Fröbisch 2008; Barrett et al. 2009, this volume; Abdala &
Ribeiro 2010; Ezcurra 2010b; Brusatte et al. this volume; Irmis
this volume; Novas et al. this volume), and has often at-
tempted to incorporate phylogenetic data on missing lineages.
Another new approach looks at diversity shifts (increase in
lineage diversification) based on phylogenetic hypotheses
(Lloyd et al. 2008; Brusatte et al. this volume), finding evidence
for increases in diversification rate in early dinosaur evolution.
Analyses of disparity (morphological diversity) and rates of
character evolution have recently been carried out for Triassic
archosaur datasets (Brusatte et al. 2008, this volume; Cisneros
& Ruta 2010), and provide a potentially highly informative
counterpart to studies of taxonomic diversity. Methods of
ancestral state reconstruction have rarely been applied to
Triassic tetrapods, but they have recently been used to inves-
tigate topics such as the early evolution of dinosaur body size
(Carrano 2006; Irmis this volume).

The elephant in the room for all of these macroevolutionary
studies is, however, the effect of uneven spatiotemporal sam-

pling on observed patterns. Recent work has suggested that
sampling biases may cause severe problems for studies of
taxonomic diversification (e.g., Smith & McGowan 2007;
Barrett et al. 2009; Butler et al. 2011); the effects of uneven
fossil record sampling on patterns of disparity and character
rates remain largely unstudied, although some theoretical
work implies that they should be more robust to such biases
(e.g. Ciampaglio et al. 2001). Some recent early Mesozoic
studies have attempted to correct for geologic biases (e.g.,
Fröbisch 2008; Lloyd et al. 2008; Barrett et al. 2009; Irmis this
volume), but more comprehensive solutions are necessary.
Uneven fossil record sampling is, however, not a reason to
abandon such macroevolutionary work: increasingly sophisti-
cated approaches aim to identify and ameliorate sampling
biases via sampling standardisation (e.g., Alroy 2010) or
multiple regression based modelling approaches (e.g., Marx &
Uhen 2010; Benson & Butler in press). Future advances in the
understanding of Triassic diversity patterns will require robust
new databases, detailed phylogenetic hypotheses, better strati-
graphic correlations and careful consideration of sampling
biases.
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